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An Integrodifferential Model for Phase Transitions:
Stationary Solutions in Higher Space Dimensions
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We study the existence and stability of stationary solutions of an integro-
differential model for phase transitions, which is a gradient flow for a free energy
functional with general nonlocal integrals penalizing spatial nonuniformity. As
such, this model is a nonlocal extension of the Allen�Cahn equation, which
incorporates long-range interactions. We find that the set of stationary solutions
for this model is much larger than that of the Allen�Cahn equation.
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1. INTRODUCTION

We study the integral equation

(J V u)(x)&u(x)&*f (u(x))=0, x # Rn, n�1 (1.1)

where J V u(x)(=�Rn J(x& y) u( y) dy) is the convolution of J and u and
*>0. We assume �R n J(x) dx=1 and f is bistable, e.g., f (u)=u(u2&1).
Solutions to (1.1) are stationary solutions of the evolution equation

ut=J V u&u&*f (u) (1.2)

which may be thought of as a nonlocal version of the Allen�Cahn equa-
tion.(1)

We find that, in the special case where u+*f (u) is nonmonotone and
* is sufficiently large, there exist stationary solutions having discontinuities
across arbitrarily prescribed interfaces. We construct both stable and
unstable solutions of this type. An important point is that some of our
results allow for J to take negative as well as positive values.
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Equation (1.2), recently proposed in ref. 3, can model a variety of
physical and biological phenomena, e.g., a material whose state is described
by an order parameter. Note that (1.2) is an L2-gradient flow of the free
energy functional

E(u)= 1
4 |

R n |Rn
j(x& y)(u(x)&u( y))2 dx dy+|

Rn
W(u(x)) dx (1.3)

with J= j��R n j, f (u)=W $(u) and *=1��R n j. Here, W is a double-well
function with two (not necessarily equal) local minima (say, at &1 and 1),
and j(r) is a measure of the energy resulting from u(x) being different from
u(x+r). The first term in (1.3) penalizes spatially inhomogeneous materials
when j>0, and the second term (bulk term) penalizes states which take
values other than the two minima of W.

From a microscopic viewpoint, one can obtain (1.3) from the following
heuristic argument, which could be justified in the mean field approximation
with a careful analysis using multiple scalings.

Consider a binary alloy, whose lattice sites are occupied by blocks,
each block consisting of many atoms of species A and B. To a site with a
block of A (B) atoms only, we assign the spin +1 (&1). Let v(r) be the
probability that the spin at site r is +1. Then the expected value of this
spin is u(r)=2v&1 # [&1, 1].

The Helmholtz free energy of our system is given by

E=H&TS (1.4)

where H is the internal interaction energy, T the absolute temperature and
S the entropy.

Similar to the Ising model, the internal energy, in the mean field
approximation, has the form

H(u)=&1
4 :

r, r$

[J AA
rr$ (1+u(r))(1+u(r$))+J BB

rr$ (1&u(r))(1&u(r$))

+J AB
rr$ ((1+u(r))(1&u(r$))+(1&u(r))(1+u(r$)))]

where J AA
rr$ , J BB

rr$ , J AB
rr$ =J BA

rr$ denote the interaction energies between sites r
and r$ with spins 1 and 1, &1 and &1, 1 and &1 (ref. 32), respectively,
which we assume are positive, translation invariant, and symmetric in
(r, r$).

In the Bragg�Williams(10) approximation, the total entropy has the
form

S(u)=&K :
r

[(1+u(r)) log(1+u(r))+(1&u(r)) log(1&u(r))]

1120 Bates and Chmaj



where K>0. Rearranging (1.4), we get

E(u)= 1
4 :

r, r$

( 1
2 J AA

rr$ + 1
2 J BB

rr$ &J AB
rr$ )(u(r)&u(r$))2& 1

2k1+:
r

(&1
2k2(r) u(r)

+TK[(1+u(r)) log(1+u(r))+(1&u(r)) log(1&u(r))]

& 1
2k3(r) u2(r)) (1.5)

where

k1= :
r, r$

( 1
2 J AA

rr$ + 1
2 J BB

rr$ +J AB
rr$ )

k2(r)=:
r$

(J AA
rr$ &J BB

rr$ )

k3(r)=:
r$

( 1
2 J AA

rr$ + 1
2 J BB

rr$ &J AB
rr$ )

We assume that k3(r)>0. Note that for TK and |k2| small enough, the last
summand in (1.5) has two minima, which are of equal depth if k2(r)=0.
We replace this summand by �r W(u(r), r) and assume W is a double-well
function everywhere defined and with minima at &1 and 1. The constant
k1 can be dropped since it does not effect the dynamics or the location of
critical points. Assuming that Jrr$# 1

2 J AA
rr$ + 1

2 J BB
rr$ &J AB

rr$ and W(u, r) are
spatially homogeneous (i.e., Jrr$= j(r&r$) and W(u, r)=W(u)) and taking
the continuum limit in (1.5) then gives (1.3). Note that this derivation does
not require j to be everywhere positive.

In what follows, we often require g(u)#u+*f (u) to be nonmonotone.
This will not be the case without a modification to the above derivation of
(1.2) and (1.3). Observe that the L2-gradient of E is

& j V u+\| j + u+W $(u)

where

W $(u)=&1
2 k2&TS$(u)&\| j + u

so

u+*f (u)=&*( 1
2k2+TS$(u))
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which is monotone. One possibility is to incorporate a short-range inter-
action by having j= jl+ js with js=c$, where $ is the Dirac delta function
and c>0. (Note that, if js(x)=mn}� (mx) for some positive, integrable
function }� and we take the limit as m � �, then js � c$ where c=� }� ).
With this, the gradient of E becomes

& j V u+\| j + u+W $(u)

=&jl V u(x)&cu(x)+\| jl+c+ u(x)+W $(u(x))

=&jl V u+\| j l+ u+W $(u)

We take J= jl ��Rn jl and *=1��R n jl so that now

u+*f (u)=&*( 1
2k2+TS$(u)+cu)

which is nonmonotone for small values of T. From now on we will just
assume that g is nonmonotone and that jl= j.

Functional (1.3) is a natural generalization of the well-known and
studied Ginzburg�Landau functional

E l (u)= 1
2 |

Rn
|{u(x)|2 dx+|

R n
W(u(x)) dx (1.6)

Namely, we change variables in the first integral of (1.3) using '=(x& y)�2,
!=(x+ y)�2 and then expand u(x)=u(!+') and u( y)=u(!&') about !,
to get the formal expression

2n |
Rn |Rn

j(2')\ :
�

k=1

:
|:|=2k&1

1
:!

�:u(!) ':+
2

d! d' (1.7)

where :=(:1 ,..., :n), |:|=:1+ } } } +:n , �:=�:1
x1

} } } �:n
xn

, :!=:1 ! } } } :n! and
':=':1

1 } } } ':n
n .

Truncating the summation in (1.7) at k=1 gives, for some c>0, an
energy

|
R n

[c |{u| 2+W(u)] dx
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which is the same as E l (u) up to the constant c which can be absorbed by
a further change of variable. Thus E l (u) can be treated as a first order
approximation of E(u). Consequently, the Allen�Cahn equation(1)

ut=2u&*f (u)

can be regarded as the first order approximation of (1.2).
Other integrodifferential equations with many of the properties of (1.2)

have been studied in refs. 27, 14�17, 24�26, 31 (continuum limits of
dynamic Ising models), refs. 6�9, 28�30 (nonlocal ferromagnetism), ref. 18
(neural networks) and in refs. 19 and 20 (nonlocal elasticity). In particular,
nonlocal versions of the Cahn�Hilliard equation(11) have been studied in
refs. 22 and 23.

Monotone traveling and stationary waves for (1.2) with n=1 were
studied in ref. 3, where discontinuous waves were also discovered. Subse-
quently, Chen in ref. 12 found some nonmonotone discontinuous waves.
Stationary homoclinic solutions were constructed by Chmaj and Ren in
ref. 13. In all these, it was observed that pinning may occur when a discon-
tinuous solution exists, even though the potential wells are of unequal
depth.

In ref. 2 we study the discrete version of this equation.
Interfacial motion in higher space dimensions was studied in refs. 15,

21, 24�26, and 31.
Stationary solutions of a higher order equation derived from (1.7)

were studied in ref. 5.
The paper is organized as follows: In Section 2 we study the case

where j �0. In Section 3 we extend our results to the case where j changes
sign and * is large. In Section 4, we study global stability for n=1 and *
large. In Section 5, we prove a result giving the asymptotic behavior of
solutions to (1.1). In particular, solutions do not in general approach their
limits exponentially at \�.

2. THE CASE j�0

We assume that f # C r, r�2, f has three zeros &1, a and 1, such that
f $(&1)>0, f $(a)<0 and f $(1)>0 and g(u)#u+*f (u) has three zeros and
exactly three intervals of monotonicity. About J (recall that J= j��R n j) we
assume that J�0 and J # W k, 1(Rn), k�1. Let m#min[r, k].

Let u&
* <u+

* be the extreme roots of u+*f (u)=0. Note that,
u&

* >&1, u+
* <1 and u\

* � \1 as * � �.
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Let :\, $ be such that u&
* <:&<a<:+<u+

* ,

f $(u)�$>0 for u # [&1, :&] _ [:+, 1] (2.1)

*f (:&)�(1&:&) sup
x # Mc |M

J(x& y) dy (2.2)

&*f (:+)�(1+:+) sup
x # M

|
Mc

J(x& y) dy (2.3)

where M is a given measurable set and M c is its complement.

Theorem 2.1. Assume that f satisfies the hypotheses at the beginning
of this section. For any *>0 and measurable set M satisfying (2.1), (2.2)
and (2.3) there exists a unique solution û to (1.1), such that

û(x) {�:+ for x # M,
�:& for x # M c

Moreover, û is C0 on M and M c, C m on int M and int M c and (locally)
asymptotically stable in the L�(Rn) norm.

Proof. First we prove existence. Let

B=[u # L�(Rn) : u(x) # [:+, 1] for x # M and u(x) # [&1, :&] for x # M c]

Define T : B � L�(Rn) by

Tu(x)=u(x)+h[J V u(x)&u(x)&*f (u(x))]

We show that for h>0 small enough T is a contraction mapping.
Since |J V u(x)|�&u&� , taking h so small that

h*f $(u)<1&h for u # [&1, :&] _ [:+, 1]

ensures that &1�Tu(x)�1 for all u # B. Furthermore, since u&h[u+*f (u)]
is increasing on [:+, 1], for x # M,

Tu(x)�:++h _:+ |
M

J(x& y) dy&|
Mc

J(x& y) dy&:+&*f (:+)&
=:+&h _(1+:+) |

M c
J(x& y) dy+*f (:+)&�:+

where we used (2.3) in the last inequality.
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Similarly, for x # M c, (2.2) implies that Tu(x)�:&, therefore

T : B � B (2.4)

Let u, v # B, then

&Tu&Tv&��(1&h(1+$*)) &u&v&�+h &J*(u&v)&�

�(1&h$*) &u&v&�

provided h(1+*f $(u))<1 for u # [&1, :&] _ [:+, 1]. Thus T is a con-
traction for

0<h<
1

1+* maxu # [&1, :&] _ [:+, 1] f $(u)

and has a unique fixed point û # B. Clearly, û is our desired solution.
On each of the sets M and M c, (1.1) can be rewritten as

û= g&1
i (J V û), i=1, 2

where g(u)=u+*f (u) and g&1
i is defined to be one of the two extreme

branches of g&1. Since J V û is C k, we conclude that û is C0 on M and M c,
Cm on int M and int M c.

Remark 2.2. Note that if * is large enough, (2.2) and (2.3) do not
place any constraint on M.

We now show that our solution û is asymptotically, exponentially
stable.

For some positive = and ; to be chosen later, define

u� (x, t)=û(x)+=e&;t

Let Nv#vt&(J V v&v&*f (v)). It is easily seen that

Nu� =&;=e&;t&(J V û&û&*f (û+=e&;t ))

=&;=e&;t+*f (û+=e&;t )&*f (û)

By Taylor's expansion, |*f (û+=e&;t )&*f (û)&*f $(û) =e&;t|�C(=e&;t )2

for some C>0. Thus

Nu� �&;=e&;t+*f $(û) =e&;t&C(=e&;t )2

By (2.1), we can choose positive = and ; small enough such that
Nu� (x, t)�0 for all t>0, thus u� is a supersolution for all t>0.
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In a similar way,

u
�
(x, t)#û(x)&=e&;t

is a subsolution for = and ; chosen as before and all t>0.
Consider the Cauchy problem: (1.2) with initial data u0 , such that

û(x)&=�u0(x)�û(x)+=

The comparison principle for (1.2) implies that the solution u(x, t) of the
Cauchy problem satisfies

û(x)�lim inf
t � �

u(x, t)�lim sup
t � �

u(x, t)�û(x)

thus û is exponentially, asymptotically stable in L�(Rn) norm.

Remark 2.3. In the above proof, we used the following comparison
principle:

Let u, v # L�(R_[0, T]) satisfy

ut&(J V u&u)+ f (u)�vt&(J V v&v)+ f (v) on R_[0, T]

and &1�v(x, 0)�u(x, 0)�1. Then &1�v(x, t)�u(x, t)�1.
This can be proved (under the assumption �R y2J(y) dy<�) by a

modification of an arguyment on p. 79 in ref. 31.

3. THE CASE * LARGE

Let f and J be as in Section 2, but now we allow J to change sign.
Note that the existence proof from Section 2 cannot be used here, since in
this case T defined in (2.4) in general does not map B into B.

We proceed as follows. First, we establish a priori estimates for
L�(Rn) solutions of (1.1). Then with the help of a continuation argument,
for * large enough, we construct all stationary solutions to (1.1).

We assume that f has at least linear growth outside [&1, 1]. Let

{*f (u)�d(u+1) for u� &1,
*f (u)�d(u&1) for u�1

(3.1)

for some d >0. Define

P#[x # Rn : J(x)>0],

N#[x # Rn : J(x)<0]
Assume that

d >2 |
N

|J(x)| dx (3.2)
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Proposition 3.1. Assume (3.2) holds. Then any L�(Rn) solution u
to (1.1) satisfies

&d
d&2 �N |J |

�u(x)�
d

d&2 �N |J |
for all x # Rn (3.3)

Proof. Set M#supx # Rn u(x), m#infx # R n u(x). Let [xM
n ]n be a

sequence such that u(xM
n ) � M as n � �, and [xm

n ]n a sequence such that
u(xm

n ) � m as n � �. Then

*f (u(xM
n ))&M |

P
J( y) dy&m |

N
J( y) dy

=|
P

J( y)(u(xM
n + y)&M ) dy

+|
N

J( y)(u(xM
n + y)&m) dy&u(xM

n )�&u(xM
n )

Passing to the limit n � �, we get

*f (M )�(M&m) |
N

|J | (3.4)

A similar argument shows that

*f (m)�(m&M ) |
N

|J | (3.5)

Now, if m�&1 and M�1 then obviously (3.3) is satisfied. Let us assume
that m< &1 and M>1. Applying (3.1) to (3.4) and (3.5), we then get

d(M&1)�(M&m) |
N

|J | (3.6)

and

d(m+1)�(m&M ) |
N

|J | (3.7)

From (3.7) and (3.2) we obtain

&m�
d+M �N |J |

d&�N |J |
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Substituting this into (3.6) we get

M \d&|
N

|J |&
(�N |J | )2

d&�N |J |+�d+
d �N |J |

d&�N |J |

Thus, because of (3.2) we have

M�
d

d&2 �N |J |

and

m�
&d

d&2 �N |J |

Finally, if M�1 and m<&1, then (3.7) and (3.2) imply that

m�
&d&�N |J |

d&�N |J |
�

&d
d&2 �N |J |

A similar argument shows that M>1 and m�&1 again implies

M�
d

d&2 �N |J |

which completes the proof. K

Remark 3.2. Note that if J�0 and u is a nonconstant solution of
(1.1), then (3.3) at first implies

&1�u(x)�1 for all x # Rn

but one then can easily see from (1.1) that

&1<u(x)<1 for all x # Rn

actually holds for such nonconstant solutions.

Obviously,

&d
d&2 �N |J | |

R n
|J |�J V u�

d
d&2 �N |J | |Rn

|J |#b

Let us assume that * is large enough that

|1+*f $(u)|>|
R n

|J | whenever |u+*f (u)|�b (3.8)
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Fig. 1. u+*f (u).

Let uJ
1 , uJ

2 be the two zeros of u+*f (u)&b such that &1<uJ
1<uJ

2<1 and
uJ

3 , uJ
4 the two zeros of u+*f (u)+b such that &1<uJ

3<uJ
4<1 (see Fig. 1).

Define

I J
1#_ &d

d&2 �N |J |
, uJ

1& ,

I J
2#[uJ

2 , uJ
3],

I J
3#_uJ

4 ,
d

d&2 �N |J |&
From the definition of b we immediately have

Proposition 3.3. Assume (3.2) and (3.8) hold. Then any L�(Rn)
solution u to (1.1), satisfies

u(x) # I J
1 _ I J

2 _ I J
3 for all x # Rn (3.9)

We now state our theorem.

Theorem 3.4 (Existence). Assume that f satisfies (3.8). All solu-
tions of (1.1) are characterized as follows.

Let M1 and M2 be any two disjoint measurable sets. Then there exists
a unique solution ûJ to (1.1), such that ûJ (x) # I J

1 for x # M1 , ûJ (x) # I J
2 for
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x # M2 and ûJ (x) # I J
3 for x # (M1 _ M2)c. Moreover, ûJ is C m on int M1 ,

int M2 and int(M1 _ M2)c.

Proof. Let M1 and M2 be any two disjoint measurable sets. Define

F(u, :)=:(J V u&u)& f (u)

and

&1, x # M1 ,

u0(x)={a, x # M2 , (3.10)

1, x # (M1 _ M2)c

Note that F(u0 , 0)=0. Let L0#(�F��u)(u0 , 0). Then, since

L0v=&f $(u0) v (3.11)

L0 is invertible in L�(Rn), thus, by the Implicit Function Theorem, there
exists some :0>0, such that there exists a locally unique solution u: of
F(u, :)=0 for |:|�:0 .

Consider the family of equations parameterized by * # [*
*

, 1�:0]:

G(u, *)#J V u&u&*f (u)=0 (3.12)

where *
*

is the infimum of *'s for which (3.8) holds, and without loss of
generality *

*
<1�:0 . Clearly, G is C 1 on L�(Rn)_R1. When *=1�:0 ,

(3.12) has the solution u:0
. The Implicit Function Theorem is now used to

obtain the same conclusion for all * # [*
*

, 1�:0]:
Let u* be a solution of G(u, *)=0 and L* be the linear operator

defined in L�(Rn) by

L*v=J V v&[1+*f $(u*)] v (3.13)

Note that L*#(�G��u)(u* , *).
Let *0 # (*

*
, 1�:0] be such that a solution, u*0

, exists to the equation
G(u, *0)=0. First, we show that there exists '>0 such that for
* # (*0&', *0], (3.12) has a solution.

By the Implicit Function Theorem, it suffices to show that L*0
is

invertible. (3.13) can be rewritten as

L*0
v=[1+*f $(u*0

)] _ 1
1+*f $(u*0

)
J V v&v& (3.14)
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Since from (3.9) we a priori know that |1+*f $(u*0
)|>&J&L1(R n) , it is easily

seen that L*0
is invertible.

To show that we can continue the solution branch to * # [*
*

, 1�:0 ],
we argue by contradiction. Suppose that there is some *� �*

*
such that a

solution exists for * # (*� , 1�:0], but not for *=*� . Note that for any
x1 , x2 # M1 we have

|u*(x1)&u*(x2)|�
|DJ V u* |�

minx # M1
[ |1+*f $(u*(x))|]

�const

where DJ is the (weak) derivative of J. Similar inequalities hold for any
x1 , x2 # M2 or any x1 , x2 # (M1 _ M2)c. This implies that the family of
solutions u* , * # (*� , 1�:0], is equicontinuous on M1 , M2 and (M1 _ M2)c.
Thus, by the Arzela�Ascoli Theorem, we can pass to the limit along a
sequence *n � *� to obtain a solution of G(u, *� )=0.

This completes the existence proof. Note that we have existence for
*=*

*
, where (3.8) may fail.

To show uniqueness when (3.8) holds, assume that there are two dis-
tinct solutions u1 and u2 of (1.1), such that u1(x), u2(x) # I J

1 for x # M1 ,
u1(x), u2(x) # I J

2 for x # M2 and u1(x), u2(x) # I J
3 for x # (M1 _ M2)c. Then

|u1&u2|��| g&1
i (J V u1)& g&1

i (J V u2)|��k |u1&u2|�

where g(u)=u+*f (u) and g&1
i , i=1, 2, 3, is defined to be one of the three

branches of g&1 and k<1 by (3.8). Thus u1#u2 a.e.
Finally, regularity follows from a similar argument as was used in

Theorem 2.1. K

We now provide a stability theorem for the solutions constructed in
Theorem 3.4.

Theorem 3.5 (Stability). Let u(x) be a solution of (1.1). Then

1. if u(x) # I J
1 _ I J

3 for all x # Rn, u is (locally) exponentially asymp-
totically stable in the L�(Rn) norm.

2. if u(x) # I J
2 for x # M2 , where M2 is a measurable subset of Rn,

such that |M2|>0, then u is unstable in the L�(Rn) norm.

Proof. First, we investigate _(L*), the spectrum of L* acting on L�,
defined in (3.13). Note that (L*&+) v=J V v&[1+*f $(u)++] v is invert-
ible for

+ # ,
r # S

[z: |z+r|>&J&L1(Rn)]
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where S#[1+*f $(u(x)): x # Rn], since

(L*&+) v=[1+*f $(u)++] _ 1
1+*f $(u)++

J V v&v&
Thus,

_(L*)/ .
r # S

[z: |z+r|�&J&L1(R n)] (3.15)

If u(x) # I J
1 _ I J

3 for all x # Rn, then _(L*) lies in the left-half plane, thus, by
ref. 4, u is (locally) asymptotically stable.

Assume on the other hand, that u(x) # I J
2 for x # M2 , where M2 is

a measurable subset of Rn, such that |M2|>0. From the construction
in Theorem 3.4, this solution is continued from u0 given by (3.10). Note
that

_(L0)/[&f $(&1), &f $(a), &f $(1)]

where L0 is given by (3.11). Each of the points in _(L0) is an eigenvalue
of infinite multiplicity. Since our continuation is a C1 deformation, by
(3.15), _(L*) does not intersect the imaginary axis and _(L*) contains
values in the right-half plane. Thus, from ref. 4 we conclude that u is
unstable. K

Any solution u(x) constructed in Theorem 3.4 is such that |1+*f $(u(x))|
>1 for all x # Rn. We now show that the instability criterion in Theorem 3.5
can be relaxed to accommodate other solutions to (1.1) with general non-
monotone g.

Theorem 3.6 (Instability). Assume that J�0 and * is such that
1+*f $(u)<0 on some interval. Let M2 be a measurable subset of Rn, such
that |M2|>0, and let u be a solution to (1.1) such that 1+*f $(u(x))<0
for x # M2 . Then u is unstable in the L�(Rn) norm.

Proof. For some positive numbers = and ; to be chosen later, let

u
�
(x, t)#{u(x)+=e ;t

u(x)
for x # M2 ,
for x # M c

2
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Define Nv#vt&(J V v&v&*f (v)). It is easily seen that

Nu
�
(x, t)

=

=;e ;t&\|M2

J(x& y)(u( y)+=e ;t) dy

+|
M c

2

J(x& y) u( y) dy&u(x)&=e ;t&*f (u(x)+=e ;t)+ for x # M2

&\|M2

J(x& y)(u( y)+=e ;t) dy

+|
M c

2

J(x& y) u( y) dy&u(x)&*f (u(x))+ for x # M c
2

={
=;e ;t+*f (u(x)+=e ;t)&*f (u(x))+=e ;t |

Mc
2

J(x& y) dy

&=e ;t |
M2

J(x& y) dy

for x # M2

for x # M c
2

By Taylor's expansion, |*f (u+=e ;t )&*f (u)&*f $(u) =e ;t|�C(=e ;t )2 for
some C>0. Thus,

Nu
�
(x, t)�{=e ;t(;+*f $(u(x))+C=e ;t+�M c

2
J(x& y) dy)

0
for x # M2 ,
for x # M c

2

�{=e ;t(;+1+*f $(u(x))+C=e ;t )
0

for x # M2 ,
for x # M c

2

Since 1+*f $(u(x))<0 for x # M2 , we can choose =, ;>0 such that

Nu
�
�0 for 0<t�t0 (3.16)

where t0 is such that

C=e ;t0= inf
x # M2

[&1&*f $(u(x))&; ]

Thus, u
�

is a subsolution of the Cauchy problem for (1.2) up till time t0 . But
it is easily computed that the t-independent function u

�
(x, t0) satisfies

Nu
�
(x, t0)�{=e ;t0(*f $(u(x))+C=e ;t0+�Mc

2
J(x& y) dy)

&�M2
J(x& y) =e ;t0

for x # M2 ,
for x # M c

2

�{=e ;t0(&;)
0

for x # M2 ,
for x # M c

2
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so Nu
�
�0 and u

�
is also a subsolution. By the comparison principle for (1.2)

this means that the solution u(x, t) of the Cauchy problem with initial data
u
�
(x, 0) is such that

&u( } , t)&u( } )&��=e ;t0= inf
x # M2 {

&1&*f $(u(x))&;
C = for all t�t0

Since the expression on the right is independent of =, instability follows.

Remark 3.7. The assumption J�0 is necessary here, since we are
using the comparison principle for (1.2), which is not applicable when J
changes sign.

4. GLOBAL STABILITY FOR * LARGE AND n=1

For n=1, the domains of attraction of a class of asymptotically stable
solutions (constructed in the previous section) can be characterized as
follows.

Assume that J�0 and �R1 |x| J(x) dx<�. Then uJ
1 , uJ

2 , uJ
3 , uJ

4 , I J
1 , I J

2 ,
I J

3 defined as in the previous section do not depend on J. Thus in the
following, we omit the superscript J.

Theorem 4.1 (Global Stability). Let û be an asymptotically
stable solution of (1.1), such that û(x) # I1 for x # M and û(x) # I3 for
x # M c, for some measurable M with M and M c both having positive
measure. Assume that sup[ |z|: z # T ]<�, where T #M� & M c is the set of
jump discontinuities of û. Consider the Cauchy problem: (1.2) with the
initial condition u(x, 0)=u0(x). Assume that &1�u0(x)�1,

{u0(x) # [&1, u2]
u0(x) # [u3 , 1]

for x # M,
for x # M c (4.1)

and u0 is continuous on M and M c. Then the solution u(x, t) of the Cauchy
problem converges exponentially to û(x).

Proof. By some results in ref. 3, there are two monotone solutions of
(1.1), U1 and U2 such that U1(&�)=&1, U1(+�)=1, U2(&�)=1,
U2(+�)=&1 and U1(x), U2(x) # I1 _ I3 . These solutions have the nice
property that the solution u(x, t) of the Cauchy problem (1.2) with an
initial condition u(x, 0)=u0(x) is ``squeezed'' between a translate of U1 (or
U2) and &1 (or 1). To be more precise, for some +>0, depending upon
u0 , there exist constants x1 , x2>0 and $>0, such that the following four
implications hold for all x # R1 and t>0:
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u(x, t)<U1(x&x1)++e&$t if lim sup
x � &�

u0(x)<a,

u(x, t)>U2(x&x1)&+e&$t if lim inf
x � &�

u0(x)>a,
(4.2)

u(x, t)<U2(x&x2)++e&$t if lim sup
x � +�

u0(x)<a,

u(x, t)>U1(x&x2)&+e&$t if lim inf
x � +�

u0(x)>a

Note that by the assumption that sup[ |z|: z # T ]<�, where T is the set
of jump discontinuities of u, exactly two of the above inequalities are
satisfied.

We show that there is a t1>0 such that

u(x, t) # [&1, u1] _ [u4 , 1] for t>t1 (4.3)

It suffices to show that there is some =>0, such that

{ut(x, t)<&= for all (x, t) such that u(x, t) # [u1 , u2],
ut(x, t)>= for all (x, t) such that u(x, t) # [u3 , u4]

(4.4)

(4.3) will then follow by setting

t1#max {u2&u1

=
,

u4&u3

= =
To see, say, the first of the inequalities in (4.4), we argue as follows:

Fix t0>0, let A=[x: u(x, t0)=1], and with K denoting the support
of J, let Kx=[ y: x& y # K ]. It is easy to see that if A{< then there is a
point x0 # A such that |Kx0

& Ac|>0. Hence,

J V u(x0 , t0)& g(u(x0 , t0))=|
R1

J(x0& y)(u( y, t0)&1) dy<0

since u( y, t0)<1 on Ac. This implies that ut(x0 , t0)<0 while u(x0 , t0)=1
and u(x0 , t)�1 for 0�t�t0 , a contradiction. Thus, A is empty and
u(x, t)<1 for all t>0 and x # R1. Similarly, u(x, t)>&1 for all t>0 and
x # R1.

Again, fix t0>0 and consider x0 such that u(x0 , t0) # [u1 , u2]. Note
that the set D(t0) of such points x0 is contained in a compact interval for
a suitable choice of t0 by (4.2). Furthermore, this interval does not increase
for t>t0 . Since g(u(x0 , t0))�1 and u( y, t0)<1 for all y # R1, we have

J V u(x0 , t0)& g(u(x0 , t0))�|
R1

J(x0& y)(u( y, t0)&1) dy<0
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This is uniform in t�t0 since (4.2) prevents u( y, t) approaching 1 a.e. on Kx0
.

That is, there is a constant =0>0 such that ut(x0 , t)�&=0 for t�t0 . This
=0 depends continuously upon x0 lying in a compact set, and hence we can
choose =>0 uniformly, as claimed.

Since 1+*f $(u(x, t))>1 for all x # R1 and t>t1 , the modulus of con-
tinuity of u(x, t) in x is bounded on any [a, b] & M and [a, b] & M c,
uniformly in t�t1 (see refs. 3 or 12 for easy proofs). This, together with the
Arzela�Ascoli Theorem and (4.2) implies that for any sequence t$n � �
there exists a subsequence tn � � such that

u(x, tn) � some u�(x) in L�(R1) as tn � � (4.5)

Note that u�(\�)=&1 or 1.
It now suffices to show that u� is a solution of (1.1) (from uniqueness,

it will then follow that u�#û). The idea follows the lines of ref. 3 and we
only outline the proof here.

Let ' be a C� function defined on [0, �) such that '(x)=1 for
x # [0, 1�2] and =0 for x�1. Let

w(x, t)#{
u(x, t)
u(x, t) '(x&t)+(u�(+�)&'(x&t))
u(x, t) '(&x&t)&(u�(&�)&'(&x&t))

for |x|�t,
for x�t,
for x�&t.

Then w(x, t)#u�(+�) for x�t+1 and w(x, t)#u�(&�) for x�&t&1.
Define an energy functional associated with (1.2) by

V(t)= 1
2 |

R 1
[(J*w&w) w&*F(w)+*H(x) F(u�(�))] dx

where H(x) is the Heaviside step function and F(u)#�u
u�(&�) f (s) ds.

V clearly converges, because of the truncation. Using an argument similar
to one in ref. 3, it can be shown that V(t) is bounded independently in
t�0. It is here (and only here) that the assumption �R 1 |x| J(x) dx<� is
necessary. Next, we differentiate V(t) to obtain

V4 (t)=|
R1

(J*w&w&*f (w)) wt dx

Let

Q(t)#|
R1

(J*w&w&*f (w))2 dx
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It can then be shown that

lim
t � �

(V4 (t)&Q(t))=0 (4.6)

(see ref. 3 for details). Since Q(t)�0 it follows that lim inft � � V4 (t)�0. We
thus deduce the existence of a sequence [t$n], with t$n � � such that

lim
n � �

V4 (t$n)=0

(for otherwise lim inft � � V4 (t)>0 implying that V(t) � �, in contradic-
tion with the fact that V(t) is bounded). By (4.6), Fatou's Lemma, (4.5),
and by passing to the limit along the subsequence [tn] of [t$n], we have

|
R 1

(J V u�&u�&*f (u�))2 dx=0

thus u� is a solution of (1.1).
The convergence is uniform, and to finishthe proofwe apply Theorem 3.5(1),

which says that if u(x, t) lies in a =-neighborhood of u� for some tn , then
u(x, t) � u�(x) for t � �.

Remark 4.2. Note that in particular, this results provides another
proof of existence of stable solutions.

5. ASYMPTOTIC BEHAVIOR OF MONOTONE STATIONARY
WAVES

Let n=1 and consider the increasing solution u� (x) to (1.1), constructed
in Theorem 3.4 and ref. 3, having only one jump discontinuity. Assume that
the jump occurs at x=0. It was shown in ref. 3 that u� $>0.

Theorem 5.1. Let u� be as above. Then

lim sup
x � \�

J(x)
u� $(x)

<�

Proof. u� satisfies J V u= g(u). Differentiating this equation gives

g$(u� (x)) u� $(x)=J(x)(u� (0+)&u� (0&))+(J V u� $)(x)
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Dividing this equation by u� $(x) and observing that (J V u� $)(x)�0 for all
x # R1 then yields

lim sup
x � \�

J(x)
u� $(x)

<�

Remark 5.2. This shows that the convergence of u� to \1 is not
faster than that of � J(x) dx, in particular it need not be exponential.
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